Tagged: automaatio

Kelan viisi haastetta koneoppimisessa

Katsoin YouTube-videon Machine Learning for Kela, jossa Kelan Ari Vähä-Erkkilä kertoo Alexander Jungin opettaman koneoppimiskurssin opiskelijoille Kelan koneoppimisprojekteista. Tiivistän tässä blogiartikkelissa keskeiset haasteet algoritmisessa päätöksenteossa Kelan kannalta.

Kelan viisi koneoppimishaastetta

HAASTE 1: Tarkkuuden vaatimus on suuri: jokaisen numeron takana on ihminen, siksi varaa virheisiin ei ole (ja on annettava valitusmahdollisuus, jonka käsittelee ihminen). Tyypillisesti mikään algoritmi ei kuitenkaan anna 100% tarkkuutta. Voi tapahtua kahdentyyppisiä virheitä: vääriä positiivisia ja vääriä negatiivisia, eli malli antaa myönteisen tukipäätöksen vaikka ei pitäisi antaa, tai malli antaa kielteisen päätöksen, vaikka tuki olisi pitänyt myöntää. Tarkkuuden ongelma on suurin este tukipäätösten automaatiossa.

RATKAISU: Pitää olla ”ihminen luupissa” (eng. human in the loop), eli mahdollista päätöksestä valittaminen ja sen käsittely Kelan asiantuntijan toimesta. Tämä on tärkeää, koska lain soveltamiseen voi liittyä tulkintaa, ja kaikki Kelan päätökset perustuvat lakiin.

HAASTE 2: Lait eivät ole yhteensopivia koodin kanssa.

RATKAISU: Tukia koskevat lait pitäisi kirjoittaa eri tavalla, niin että niissä huomioidaan siirtäminen koneoppimisjärjestelmiin (laki ==> koodi).

HAASTE 3: Lait muuttuvat, jolloin malli joka toimii vanhalla lailla ei välttämättä toimi uudella järjestelmällä. Koneoppiminen toimii tässä ympäristössä huonommin kuin sääntöpohjainen päätöksenteko.

RATKAISU: Sovella sääntöpohjaisia malleja, ei koneoppimista.

HAASTE 4: Tietojärjestelmät eivät ole täysin kitkattomasti yhteydessä — esim. oppilaitoksilta saadaan tieto hyväksytyistä opiskelijoista, mutta kaikilla edunsaajilla ei ole pankkitiliä, joten maksatusta ei voida automatisoida.

RATKAISU A: Sovella manuaalisia prosesseja silloin kun ei voida automatisoida.

RATKAISU B: Julkisten API-rajapintojen kehittäminen.

HAASTE 5: Väärinkäyttö. Automaattisesta päätöksenteosta (kuten manuaalisestakin) voi löytyä virheitä, joita ihmiset hyväksikäyttävät saadakseen aiheettomia tukia. Esimerkiksi jos päätöksen saa heti koneelta, tuenhakijat voivat negatiivisen päätöksen saadessaan alkaa kokeilla eri arvoja saadakseen positiivisen päätöksen koneelta.

RATKAISU: Valvo väärinkäytöksiä automaattisesti ja manuaalisesti.

Muita haasteita

Muita Arin mainitsemia haasteita ovat:

  • kymmenien erilaisten mallien hallinta ja testaaminen
  • datan hallinta, niin että se on kätevästi eri mallien käytössä
  • koneoppimisen ja sääntöpohjaisten mallien yhdistäminen,
  • mahdollinen puolueellisuus ihmisten ja koneiden toimesta
  • suomen kielen erityisluonteisuus (parhaat mallit ovat englannin kielelle)
  • henkilökohtaisen datan arkaluonteisuus ja sen tuomat rajoitukset partnerien hyödyntämiseen
  • ja organisaation muutosjohtaminen (uudet roolit ja koneoppimista tukevat toimintatavat pitää luoda).

Johtopäätös

Vaikka automaattinen päätöksenteko saattaa vaikuttaa helpolta vaihtoehdolta Kelalle (”annetaan tekoälyn hoitaa”), ongelmat ovat käytännön yksityiskohdissa. Pienet kitkatekijät tekevät täydellisen automaation Kelan käyttöön mahdottomaksi.

Paras ratkaisu on soveltaa automaatiota kahdella tavalla: (a) Kelan työntekijöiden ongelmien ratkaisuun eli työprosessien tukemiseksi ja (b) tarkoin rajattujen teknisten ongelmien ratkaisuun (esim. paperihakemusten muuttaminen automaattisesti tekstiksi, jolloin kenttien tiedot voidaan automaattisesti syöttää tietokantaan).

Automaattinen päätöksenteko ei ole riskitöntä, joten varasuunnitelmia ja valvontaa tarvitaan. Päätöksiin voi myös liittyä tulkintaa, jota kone ei missään tapauksessa voi tehdä. Tämän vuoksi tukien käsittelijöitä ei voi korvata algoritmilla.

Koneppimisteknologiat, joista Kela voi hyötyä:

Mielestäni etenkin seuraavat teknologia voivat olla hyödyllisiä:

  • syväoppiminen (eng. deep learning) — tekstintunnistus, chatbot-järjestelmät
  • päätöspuupohjaiset mallit (esim. RandomForest), koska nämä antavat tulkinnan jokaiselle päätökselle

Kuten Kelan analyysi osoittaa, koneoppiminen ei ole ratkaisu päätöksenteon täydelliseen automatisointiin. Sen sijaan se voi olla hyödyllinen työkalu osaprosessien tehostamiseen.

9 eettistä ongelmaa keinoälyssä

Keinoälyssä on kyse muustakin kuin teknologisista edistysaskeleista. Nykyisin tunnustetaan laajalti, että keinoälyjärjestelmiin liittyy keskeisesti inhimillisten arvojen ylläpitäminen ja riskienhallinta. Teknologiayritykset, kuten Googlen emoyhtiö Alphabet, Amazon, Facebook, IBM, Nokia ja Microsoft, sekä useat tieteen ja teknologian maailmassa tunnetut mielipidevaikuttajat, kuten Stephen Hawking, Elon Musk ja Bill Gates uskovat, että nyt on paras aika keskustella paitsi keinoälyn mahdollisuuksista, myös sen varjopuolista ja potentiaalisista riskeistä.

Tämän vuoksi on olennaista käydä läpi eettisiä ja ajankohtaisia kysymyksiä keinoälyyn liittyen. Tässä blogiartikkelissa esitetään yhdeksän keinoälyn yhteiskunnallista riskiä.

  1. Työttömyys. Mitä tapahtuu työpaikkojen loppuessa?

Yleisenä trendinä on, että automaatio sysää ihmisiä pois suorittavan tason teollisista töistä kohti korkeamman jalostusarvon työtehtäviä. Esimerkiksi kuljetusalalla on monia autonomisen ajamisen kokeiluja ympäri maailmaa, jotka saavat myös pohtimaan automaation eettistä puolta. Jos autonomisen ajamisen hyödyntämisen avulla pystytään radikaalista vähentämään liikenneonnettomuuksia taikka merenkulussa alusten uppoamisia inhimillisten virheiden seurauksena, ja tämän kustannus on ihmisten työpaikkojen menetys, voidaanko lopputulos tulkita pääasiallisesti eettiseksi?

Toisaalta työpaikkojen kohdalla kyse on myös ajankäytöstä. Onko työllä ollut liian keskeinen rooli ihmiskunnan historiassa? Automaatio ja keinoäly saattavatkin tarjota ihmisille mahdollisuuden löytää elämälleen muunlaisen tarkoituksen kuin työn. Tämän kysymyksen lisäksi Algoritmitutkimuksen tiimoilta on esitetty ajatuksia, että työpaikkojen korvaantuminen on tilapäinen ongelma, joka on toistunut historian saatossa useita kertoja.

  1. Epätasa-arvo. Miten yhteiskunnassa jaetaan keinoälystä kertyvä varallisuus?

Nykyinen vallitseva talousjärjestelmä perustuu ihmisten ajan ja kykyjen panoksesta saatavaan korvaukseen, joka useimmiten arvotetaan tuntipalkan muodossa. Mutta tulevaisuudessa keinoälyä hyödyntämällä yritykset voivat merkittävästi vähentää riippuvuuttaan ihmistyövoimasta. Sen seurauksena yksilöt, joilla on eniten omistuksia keinoälyyn keskittyneissä yrityksissä, keräävät suurimmat voitot. Jakaantuuko maailma siten entistä enemmän voittajiin ja häviäjiin?

Taloudellisen epätasa-arvon kasvu on jo nyt nähtävissä esimerkiksi startup-yritysten perustajien kohdalla, jotka keräävät valtaosan luomastaan taloudellisesta hyödystä. Esimerkiksi vuonna 2014 suurin piirtein samaa liikevaihtoa kerryttivät USA:ssa kolme Detroitin suurinta yritystä kuin kolme suurinta Silicon Valleyn startupia – sillä erotuksella, että jälkimmäisissä yrityksissä työskenteli 10 kertaa vähemmän työntekijöitä.

Jos haluamme kehittää ”työnteon jälkeistä” yhteiskuntaa, miten luomme siihen soveltuvan reilun talousjärjestelmän? Tämä vanha marxilainen kysymys tuotantotekijöiden omistajuudesta ja niistä koituvan varallisuuden jakautumisesta nostaa siis päätään myös keinoälyn kontekstissa. Ehdotuksena on esitetty mm. universaalia perustuloa; toisaalta siihen liittyy useita ongelmia, kuten sosialististen talouksien toimettomuuden ongelma.

  1. Ihmiskunta. Miten keinoäly vaikuttaa käyttäytymiseemme?

Keinoälyyn perustuvista boteista tulee jatkuvasti kehittyneempiä mallintamaan ihmisten välisiä kanssakäymisiä. Vuonna 2014 botti nimeltä Eugene Goostman voitti Turingin testin ensimmäistä kertaa. Goostman sai yli puolet häntä arvioinutta ihmistä luulemaan, että he puhuvat aidolle henkilölle.

Kyseinen virstanpylväs tuskin jää viimeiseksi. Tälläkin hetkellä moni yritys hyödyntää esimerkiksi chat-botteja asiakaspalvelussaan (Suomessa esimerkiksi IF Vakuutusyhtiön ”Emma”). Ihmisten kapasiteetti osoittaa huomiota ja huolenpitoa toisilleen on rajallinen, mutta botit pystyvät panostamaan niihin rajattomasti ja ovat siksi kenties ihanteellisempia asiakaspalvelijoita. On kuitenkin vielä kyseenalaista, miten tehokkaasti botit voivat ratkoa monimutkaisia asiakasongelmia sekä ennen kaikkea osoittamaan asiakaspalvelutyössä tärkeää empatiakykyä.

Joka tapauksessa voimme jo huomata, miten keinoäly onnistuu aktivoimaan aivojemme palkintojärjestelmiä. Esimerkkeinä klikkiotsikot, joiden tarkoituksena on testata erilaisten viestien toimivuutta mielenkiintomme herättäjänä, leviävät tehokkaasti sosiaalisen median uutisvirta-algoritmien välityksellä. Samankaltaisia keinoja käytetään myös muiden ohella luomaan videopeleistä addiktiivisia eli riippuvuutta aiheuttavia. Vaikka näissä esimerkeissä ihminen varsinaisesti luo sisällön, kone pystyy eri sisällöistä valitsemaan sen kaikkein koukuttavimman.

  1. Keinoälyttömyys. Miten voimme estää virheitä?

Älykkyys muodostuu oppimisen kautta, oli kyseessä ihminen tai keinoäly. Järjestelmillä on yleensä harjoitusjakso, joissa ne ”opetetaan” havaitsemaan oikeita kuvioita ja toimimaan niille syötetyn komennon perusteella. Kun järjestelmän harjoitusjakso on valmis, se voidaan siirtää haastavampaan testivaiheeseen ja sen jälkeen ottaa julkiseen käyttöön.

Järjestelmiä on kuitenkin mahdollista huijata tavoilla, joissa ihminen ei erehtyisi. Esimerkiksi satunnaiset pistekuviot voivat johtaa keinoälyn havaitsemaan jotain, mitä ei tosiasiassa ole olemassa. Jos haluamme luottaa keinoälyyn tulevaisuudessa entistä enemmän, on syytä varmistaa, että se toimii kuten suunniteltu, ja etteivät ihmiset voi saada sitä valtaansa omien etujensa ajamista varten. Ns. blackhat-hakukoneoptimointi eli Google-hakutulosten keinotekoinen manipulointi ja valeuutisten levittäminen ovat esimerkkejä algoritmipohjaisten järjestelmien manipulaatiosta, jolla voi olla laajamittaisia yhteiskunnallisia vaikutuksia. Vaikka ihmiset yhtäältä tietävät, ettei kaikkeen netissä vastaan tulevaan voi uskoa, toisaalta informaatiokuplaan ajautuminen ja sitä seuraava polarisoituminen on yllättävän yleistä koulutustasosta riippumatta.

  1. Robotit ja syrjintä. Miten eliminoimme keinoälyn puolueellisuuden?

Vaikka keinoäly kykenee nopeuteen ja suorituskykyyn, joka on ihmisen ulottumattomissa, sen ei voida luottaa olevan aina reilu ja neutraali. Esimerkiksi taannoin ohjelmisto, jota käytettiin tulevien rikollisten ennustamiseen, osoitti ennakkoluuloja mustia kohtaan. On tärkeä muistaa, että keinoälyn järjestelmät ovat ihmisten luomia. Ihmiset voivat olla myös puolueellisia ja tuomitsevia, ja vähintääkin erehtyväisiä. Itse asiassa algoritmi voisi teoriassa lievittää ihmisluonteen haitallisia puolia, sillä koneen päätöksentekoprosessissa ei ole mukana tarkoitusperäistä epäluotettavuutta.

  1. Turvallisuus. Miten pidämme keinoälyn turvassa vahingollisilta tahoilta?

Keinoälyn kehittyessä jokainen maailman valtio, myös Suomi, haluaa sen hyödyistä osansa.  Oli kyse sitten ihmissotilaiden korvikkeiksi tarkoitetut roboteista, itseohjautuvista asejärjestelmistä tai keinoälyjärjestelmistä, keinoälyä voidaan käyttää monenlaisiin tarkoitusperiin. Tulevaisuuden konflikteja ei käydä vain maanpinnalla, kuten esimerkiksi kauko-ohjattavat dronet ovat osoittaneet. Siksi kyberturvallisuudesta muodostuu myös keinoälyyn liittyvän keskustelun tärkeä osa-alue.

  1. ”Pahat” lampunhenget. Miten suojaudumme seurauksilta, joita ei oltu tarkoitettu?

Mitä jos keinoäly kääntyisi ihmiskuntaa vastaan? Se ei välttämättä tarkoita ”pahaa” samassa mielessä kuin ihminen toimisi tai tapaa, jolla keinoälyn luomat onnettomuudet dystooppisissa elokuvissa esitetään. Sen sijaan on mahdollista kuvitella tilanne, jossa kehittyneestä keinoälystä tulee ”lampunhenki”, joka voi täyttää toiveita tai komentoja, mutta myös kauhistuttavilla seurauksilla.

Silloin kyseessä saattaa pahanteon sijaan olla kuitenkin kyse väärinymmärryksestä ja kontekstin ymmärtämättömyydestä. Kuvittele esimerkiksi keinoälyjärjestelmä, jolle on annettu komennoksi hävittää syöpä maailmasta. Prosessoituaan asiaa se muodostaa kaavan, joka tosiasiallisesti hävittää syövän – tuhoamalla kaikki ihmiset. Tavoite täytyy, mutta tuskin ihmisten tarkoittamalla tavalla.

  1. Singulariteetti. Miten pystymme hallitsemaan monimutkaisia keinoälyjärjestelmiä?

Ihmiskunnan valta maailmassa perustuu kekseliäisyyteen ja älykkyyteen. Pärjäämme paremmin kuin isommat, nopeammat ja vahvemmat eläimet, koska pystymme kontrolloimaan ja ehdollistamaan niitä.

Mutta onko keinoälyllä jonain päivänä vastaava etu meihin nähden? Emme voi laskea kaikkea sen varaan, että vain nappia painamalla suljemme sen, koska tarpeeksi kehittynyt keinoälyjärjestelmä osaa odottaa sellaista ja puolustaa itseään. Tätä jotkut tutkijat kutsuvat singulariteetiksi, joka voidaan määritellä ajankohtana, jolloin ihmiset eivät enää ole älykkäin olento maan päällä.

  1. Robottien oikeudet. Kuinka määrittelemme keinoälyn humaanin kohtelun?

Onko roboteilla oikeuksia? Vaikka neurotieteilijät työskentelevät vieläkin tietoisuuden salaisuuksien selvittämiseksi, ymmärrämme jo monia perusmekanismeja, kuten kehun ja moitteen järjestelmiä. Tavallaan kehitämme nyt tekoälyä kepin ja porkkanan avulla. Esimerkiksi algoritmin oppimisen vahvistumista palkitaan samalla tavoin kuin koiraa sen kasvatuksessa: oppimista vahvistetaan virtuaalisella palkkiolla. Tällä hetkellä kyseiset mekanismit ovat vielä lapsenkengissä, mutta niistä tulee monimutkaisempia ja arkielämää lähestyviä teknologian kehittyessä.

Kun koemme keinoälyn olevan entiteetti, joka voi muodostaa käsityksiä, tuntea ja toimia niihin perustuen, niin oikeudellisen aseman pohtiminen ei ole enää kaukaista. Pitäisikö keinoälyä kohdella kuin eläimiä tai vertaistaan älykkyyttä? Mitä ajattelemme tunteisiin kykenevän keinoälyn kärsimyksen tasoista? Myös geneettiset algoritmit, evoluutioalgoritmit, joita käytetään järjestelmän kehittämisessä etsimällä niistä paras iteraatio, joka selviytyy, kun taas huonosti menestyneet poistetaan, edustavat monimutkaisia eettisiä ongelmia. Missä kohtaa alamme pitämään geneettisiä algoritmeja massamurhana? Tällä hetkellä yleisenä rajanvetona näissä kysymyksissä pidetään tietoisuutta – niin kauan kuin robotti tai kone ei ole tietoinen itsestään samassa mielessä kuin ihminen, tuntea kipua tai toimia itsenäisesti, sitä ei pidetä olentona, jolla olisi itseisarvo.

Johtopäätös

Edellä mainittuja keinoälyn riskejä tulee pohtia ja niiden eettistä ulottuvuutta tarkastella vakavasti. Keinoälyllä on valtava potentiaali ja on yhteiskunnan tehtävänä on saada sen potentiaali edistämään kaikkien ihmisten elämää, parhaalla mahdollisella tavalla. Tämä edellyttää laajamittaista yhteistyötä tutkijoiden ja elinkeinoelämän välillä.

***

Artikkeli perustuu World Economic Forumin katsaukseen keinoälyn eettisistä ongelmista. Alkuperäinen artikkeli ”Top 9 ethical issues in artificial intelligence” on luettavissa täältä.

Robotit eivät korvaa ihmisiä: Työn korvaamisen harha

Nykyään on vallallaan vaarallinen harha-ajatus, että ihmistyötä ei enää tarvita, koska koneet tekevät kaikki työt. Esimerkiksi fiksu ja yhteiskunnallisesti valveutunut tuttavani Antti Jokela jakoi tämän lainauksen LinkedInissä:

”It seems to me that capitalism is the best economic system we know of for a society where humans do the work.

But I fear that capitalism may not be so well suited for a society of abundance, where machines do the work, where most people are unemployed, and where technology is changing the species quickly.” – Calum Chace in “The Economic Singularity”

Ongelma on, että ajatuksella ei ole todellisuuspohjaa. Ensinnäkin suurin osa ihmisistä ei ole vailla työtä, vaan suurin osa ihmisistä on yhä edelleen työssä. Työpaikkoja myös syntyy koko ajan lisää, samoin niitä poistuu, mikä on normaalia markkinatalouden kehitystä. Katso esimerkiksi nämä kaksi juttua tältä viikolta:

https://yle.fi/uutiset/3-9651963

http://www.hs.fi/talous/art-2000005232901.html

Ensimmäisessä ennustetaan, että Suomeen syntyy lähivuosina 20,000 uutta mobiilialan työpaikkaa. Toisessa sanotaan, että oikeanlaisia markkinointiosaajia ei löydy Suomen työmarkkinoilta. Kun samaan aikaan nuorille sanotaan, että koneet korvaavat teidät ja maalataan kuvia tulevaisuudesta, jossa kenenkään ei tarvitse tehdä töitä, missä on motivaatio opiskella näitä uusia, haastavia työtehtäviä varten?

Kuitenkin harha-ajattelu on voimissaan, koska lähes kukaan ei näytä kyseenalaistavan ajatusta siitä, että ”koneet syrjäyttävät ihmiset”. Näen tähän kaksi pääsyytä. Ensinnäkin globaali talous on pitkään ollut taantumassa, ainakin länsimaisesta näkökulmasta. Kun työpaikkoja on siirtynyt ennätystahtiin Aasiaan, on helppo hyväksyä väittämä, että koneet vievät ne, vaikka todellisuudessa Aasian tehtaissa työskentelevät enimmäkseen ihmiset.

Toiseksi ”tekoälyyn” ja koneoppimiseen liittyy paljon harhakuvitelmia henkilöitä, jotka eivät ymmärrä mihin teknologia kykenee. Tällä hetkellä esim. useimmilla tietotyön aloilla tietokone tukee ihmistyön suorittamista (=mahdollistaa ihmisen tekevän enemmän) sen sijaan että korvaisi ihmisen. Tietokoneet eivät ole itsenäisiä ajattelijoita, jotka voisivat hoitaa erilaiset prosessit alusta loppuun, vaan välikohdissa tarvitaan ihmisiä. Tietokoneet eivät osaa suunnitella, tutkia, tai tehdä mitään tarkoituksellisesti luovaa. Ennen kaikkea tietokoneet eivät osaa ajatella: mitään todellista yleistä tekoälyä ei ole olemassa, vaan koneiden osuus on yhä edelleen prosessien optimoimista ja ihmistyötä helpottavia työkaluja.

Näen tässä ajassa paljon yhtäläisyyttä teollistumisen ajan Luddiitti-liikkeen kanssa: silloinkin koneiden piti korvata ihmiset. Niin kävikin joillain aloilla, mutta markkinatalouden ansiosta syntyi uusia työtehtäviä, joita ei tuolloin osattu ajatellakaan. Niin käy myös nyt: on SEO-optimoijia ja mobiilidevaajia, jotka 15 vuotta sitten eivät olleet olemassa edes käsitteinä. Sen sijaan, että omaksuisimme häviömielialan, pitää miettiä kuinka uusien työnimikkeiden syntymistä voidaan kiihdyttää, jotta suhdeluku syrjäytettyihin töihin paranisi. Samaten koulutusjärjestelmää pitää kehittää – on järjetöntä, että uudelleenkouluttautuminen toiselle alalle kestää vuosikausia; on pystyttävä parempaan.

Näen, että on kolme strategista vaihtoehtoa:

1) Jäädä tuleen makaamaan, ja voivotella menetettyjä työpaikkoja. Tämä on nähty, eikä se johda mihinkään.

2) Maalata pilvilinnoja, ja kuvitella että työtä ei enää tarvita. Tämä on harha-ajatus, joka johtaa tuhoisiin kansantaloudellisiin seurauksiin.

3) Ottaa lusikka käteen, ja kilpailla kansainvälisessä taloudessa korkeatasoisilla tuotteilla ja palveluilla. Uudistaa koulutusta, ja kannustaa työntekoon. Ja vaikka verottaa konetyötä enemmän, kuten Bill Gates ehdotti.

Kun yhteiskunta hyväksyy (harha-)ajatuksen, että ihmistyötä ei enää tarvita, yksilöillä ei ole syytä kehittää järjestelmiä eteenpäin taikka kouluttautua uudenlaisiin taloudellisiin ja yhteiskunnallisiin tehtäviin. Sen vuoksi tämä harha-ajattelu on haitallista, ja on varsin pelottavaa nähdä kuinka laajasti hyväksyttyä siitä on tullut.